New evidence for positive selection helps explain the paternal age effect observed in achondroplasia.
Hum Mol Genet. 2013 Jun 4. [Epub ahead of print]
New evidence for positive selection helps explain the paternal age effect observed in achondroplasia.
Source
Molecular and Computational Biology Program, University of Southern California, Los Angeles 90089, California, United States of America.
Abstract
There are certain de novo germline mutations associated with genetic disorders whose mutation rates per generation are orders of magnitude higher than the genome average. Moreover, these mutations occur exclusively in the male germ line and older men have a higher probability of having an affected child than younger ones, known as the paternal age-effect. The classic example of a genetic disorder exhibiting a PAE is achondroplasia, caused predominantly by a single nucleotide substitution (c.1138G>A) in FGFR3. To elucidate what mechanisms might be driving the high frequency of this mutation in the male germline, we examined the spatial distribution of the c.1138G>A substitution in a testis from an 80-year old unaffected man. Using a technology based on bead-emulsion amplification, we were able to measure mutation frequencies in 192 individual pieces of the dissected testis with a false positive rate lower than 2.7x10-6. We observed that most mutations are clustered in a few pieces with 95% of all mutations occurring in 27% of the total testis. Using computational simulations, we rejected the model proposing an elevated mutation rate per cell division at this nucleotide site. Instead we determined that the observed mutation distribution fits a germline selection model, where mutant spermatogonial stem cells have a proliferative advantage over unmutated cells. Combined with data on several other PAE mutations, our results support the idea that the PAE, associated with a number of Mendelian disorders, may be explained primarily by a selective mechanism.
PMID: 23740942 [PubMed - as supplied by publisher]